Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Волхонов Михаим ИНТИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Должность: Врио ректор ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ Дата подписания: 28.09.2023 11:35:31

Уникальный программный ключ:

Уникальный программный ключ:

Уникальный программный ключ: УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ b2dc75470204KKQCTPOMGKAЯ:ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»

Согласовано:	Утверждаю:
председатель методической комиссии	декан инженерно-технологического
инженерно-технологического факультета	факультета
/Петрюк И.П./	/Иванова М.А./
«16» мая 2023 года	«22» мая 2023 года

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ **ФИЗИКА**

Направление подготовки	35.03.06 Агроинженерия	
——— Направленность (профиль)	<u>Технический сервис в агропромышленном</u> комплексе	
Квалификация выпускника	бакалавр	
Формы обучения	очная, заочная	
 Сроки освоения ОПОП ВО	4 года, 4 года 7 мес.	

Караваево 2023

1. Цель и задачи дисциплины

Цель дисциплины «Физика»: внести вклад в развитие инженерного мышления с помощью системного и методологически ориентированного изучения основных физических явлений, понятий, законов, методов практического применения физических законов к решению типовых практических задач.

Задачи дисциплины:

- сформировать знания о физических явлениях, объектах и их моделях;
- сформировать знания о физических величинах, характеризующих физические явления и объекты;
- сформировать знания о физических законах, отражающих закономерности, проявляющиеся в физических явлениях, свойствах объектов;
- сформировать умения использовать основные физические законы для решения стандартных задач профессиональной деятельности;
- создать условия для более глубокого понимания физических явлений и законов на основе исследования явлений в лабораторном практикуме, сформировать базовые знания в области методологии проведения лабораторного эксперимента.

2. Место дисциплины в структуре ОПОП ВО

- 2.1. Дисциплина Б1.О.06 «Физика» относится к обязательной части Блока 1 «Дисциплины (модули)» ОПОП ВО.
- 2.2. Для изучения данной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами:
 - «Математика»
 - «Физика (в рамках общеобразовательной школы)»
- 2.3. Перечень последующих дисциплин, для которых необходимы знания, умения и навыки, формируемые данной дисциплиной:
 - «Теория механизмов и машин»
 - «Теплотехника»
 - «Автоматика»
 - «Технические измерения
 - «Электротехника и электроника в агроинженерии»
 - «Электропривод и электрооборудование»

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование и развитие компетенций: ОПК-1.

Категория	Код и наименование	Наименование индикатора
компетенции	компетенции	формирования компетенции
Общепрофессиональные компетенции		
	ОПК-1. Способен решать	
	типовые задачи	
	профессиональной	ИД-1 _{ОПК-1} Использует основные
Мировоззренческая и методологическая	деятельности на основе	законы естественнонаучных
	знаний основных законов	дисциплин для решения
	математических и	стандартных* задач в
	естественных наук с	соответствии с
	применением	направленностью
	информационно-	профессиональной деятельности
	коммуникационных	
	технологий	

* - к стандартным физическим задачам профессиональной деятельности в агроинженерии относятся расчет кинематических и динамических характеристик поступательного и вращательного движения твердых тел, расчет электрического поля, расчет систем сопротивлений, расчет систем конденсаторов, расчет неразветвленных и разветвленных электрических цепей, расчет магнитного поля, расчет характеристик механических и электромагнитных колебаний, расчет силы тока цепи переменного тока, расчет интерференционной картины точечных источников в вакууме и в оптически плотной среде, расчет дифракционной картины в общем случае и для дифракционной решетки; расчет характеристик фотоэффекта, расчет характеристик теплового излучения, расчет макропараметров газа в одном состоянии и в изопроцессах, расчет энергетических характеристик изопроцессов.

В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ СТУДЕНТ ДОЛЖЕН:

Знать: основные законы физики для решения стандартных задач профессиональной деятельности, физические явления и модели, к которым относятся законы, и величины, входящие в законы; виды погрешностей и способы оценки результатов измерений в лабораторном практикуме.

Уметь: интерпретировать законы, модели, величины естественнонаучной дисциплины (физики), используемые в профессиональной деятельности; представлять физические закономерности в графическом виде и верно интерпретировать их; использовать физические законы для решения стандартных задач профессиональной деятельности, а именно: применять законы кинематики для расчета кинематических характеристик поступательного и вращательного движений физических моделей (материальной точки, твердого тела); применять второй закон Ньютона, условия равновесия, основной закон динамики вращательного движения к соответствующим расчетам сил и ускорений, моментов сил и угловых ускорений; применять теорему об изменении кинетической энергии и закон сохранения энергии к расчету энергетических характеристик поступательного и вращательного движений тел; применять принцип суперпозиции к расчету электро- и магнитостатических полей; выполнять расчет общей емкости соединений конденсаторов; выполнять расчет общего сопротивления соединений сопротивлений; применять закон Ома, правила Кирхгофа к расчету токов и напряжений в неразветвленной и разветвленной электрических цепях; использовать кинематические уравнения колебаний для расчета характеристик механических и электромагнитных колебаний простых осцилляторов; использовать соответствующие условия максимумов и минимумов интенсивности света для расчета интерференционной картины точечных источников в вакууме и в оптически плотной среде и для расчета дифракционной картины от дифракционной решетки; применять уравнение Эйнштейна к расчету характеристик фотоэффекта; применять законы Стефана-Больцмана, Вина, Кирхгофа к расчету характеристик теплового излучения; применять уравнение состояния к расчету макропараметров газа, применять первое начало термодинамики к расчету энергетических характеристик изопроцессов; проводить измерения в лабораторном практикуме и оценивать результаты измерений;

Владеть: навыками осуществления выбора законов естественнонаучной дисциплины (физики), а также методами использования физических законов для решения стандартных задач профессиональной деятельности.

4. Структура дисциплины

Общая трудоемкость дисциплины составляет 11 зачетных единиц, 396 часов. **Форма промежуточной аттестации зачет, экзамен.**