Документ подписан простой электронной подписью

Срок освоения ОПОП ВО

Информация о владельце:

ФИО: Волхонов Михаил Станиславович

Должность: Врио ректорацистерство СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Дата подписания: 31.01.2024 14:03:08

Уникальный программный ключ: b2dc75470204bc2DEJAEPAJJUSLOE3COCSYALARCTBEHLIQE БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«КОСТРОМСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»

Согласовано:	Утверждаю:			
Председатель методической комиссии	Декан инженерно-технологического			
инженерно-технологического факультет	_			
Петрюк И.П.	Иванова М.А.			
16 мая 2023 года	22 мая 2023 года			
АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ				
Начертательная геометрия				
Направление подготовки				
(специальность)	23.05.01 «Наземные транспортно-технологи-			
	ческие средства»			
Направленность (специализация)	«Автомобили и тракторы»			
Квалификация выпускника	инженер			
Форма обучения	очная			

5 лет (очная)

1. Цель и задачи дисциплины

Цель дисциплины: овладение знаниями, умениями и навыками выполнения и чтения технических чертежей и решения инженерно-геометрических задач, изучение способов изображения геометрических объектов, приобретение навыков решения метрических, позиционных и конструктивных задач различными способами, развитие умения анализировать форму пространственных моделей и изображать их элементы на чертеже, изучение правил и условностей выполнения чертежей деталей и сборочных единиц, установленных стандартами, приобретение навыков выполнения и чтения машиностроительных чертежей, овладения навыками составления конструкторской и технической документации при проектировании, изготовлении и эксплуатации машин, механизмов и сооружений.

Задачи дисциплины: применять на практике полученные знания и навыки в различных условиях профессиональной деятельности и взаимодействия с окружающими;

выполнять геометрические построения, производить математические расчеты, анализировать варианты решений, работать на персональном компьютере, пользоваться операционной системой и прикладными профильными приложениями.

2.Место дисциплины в структуре ОПОП ВО:

- **2.1.** Дисциплина Б1.О.18.01 «Начертательная геометрия» относится к части Блока I «Дисциплины (модули) ОПОП ВО, формируемой участниками образовательных отношений.
- **2.2.** Для изучения данной учебной дисциплины (модуля) необходимы следующие знания, умения и навыки предыдущих дисциплин:
 - Математика;
 - Черчение;
 - Информатика.
- **2.3.** Перечень последующих учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной:
 - Детали машин и основы конструирования;
 - Сопротивление материалов;
 - Компьютерная графика.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование и развитие компетенций: УК-1

Категория компетенции	Код и наименование	Наименование индикатора		
	компетенции	формирования		
		компетенции		
Общепрофессиональные компетенции				
Универсальные	УК-1Способен	ИД-1 анализирует проблемную		
компетенции	осуществлять поиск,	ситуацию (задачу) и выделяет ее		
	критический анализ и	базовые составляющие. Рассматривает		
	синтез информации,	различные варианты решения		
	применять системный	проблемной ситуации (задачи),		
	подход для решения	разрабатывает алгоритмы их		
	поставленных задач	реализации;		
		ИД-2 определяет и оценивает прак-		

		тические последствия возможных	
		решений задачи;	
		ИД-3 осуществляет систематизацию	
		информации различных типов для	
		анализа проблемных ситуаций.	
		Вырабатывает стратегию действий для	
		построения алгоритмов	
		решения поставленных задач;	
		ИД-4 владеет навыками програм-	
		мирования разработанных алгорит-мов	
		и критического анализа полу-ченных	
		результатов.	
	ОПК-1 Способен	ИД-1 демонстрирует знания основ-ных	
	ставить и решать	понятий и фундаментальных законов	
	инженерные и научно-	физики, применяет методы	
	технические задачи в	теоретического и эксперименталь-ного	
	сфере своей	исследования физических явле-ний,	
	профессиональной	процессов и объектов;	
Общепрофессиональные компетенции	деятельности и новых	ИД-4 знает основы математики, спо-	
	междисциплинарных	собен представить математическое	
	направлений с		
	использованием	навыки математического описания	
	естественнонаучных,	моделируемого процесса (объекта) для	
	математических и решения инженерных задач;		
	технологических	ИД-5 использует физико-математи-	
	моделей	ческий аппарат для разработки прос-	
	МОДОЛОЙ	тых математических моделей явле-ний,	
		· ·	
		процессов и объектов при за-данных	
		допущениях и ограничениях.	

В результате освоения дисциплины студент должен: знать:

- методики определения проблемной ситуации (задачи) и выделять ее базовые составляющие, методы решения и разработки алгоритма реализации различных вариантов проблемной ситуации (задач);
- методики определения и оценивания практических последствий возможных решений задачи; систематизацию информации различных типов для анализа проблемных ситуаций;
- принципы разработки стратегии действий для построения алгоритмов решения поставленных задач;
- программирование разработанных алгоритмов и критического анализа полученных результатов. основные понятия и фундаментальные законы физики, методы теоретического и экспериментального исследования физических явлений, процессов и объектов; методы теоретического и экспериментального исследования объектов, процессов, явлений, заданную методику экспериментов и анализировать их результаты;
- основные понятия и законы химии, сущность химических явлений и процессов; основы математики, математическое описание процессов, математическое описание моделируемого процесса (объекта) для решения инженерных задач;
 - физико-математический аппарат для разработки простых математических

моделей явлений, процессов и объектов при заданных допущениях и ограничениях; инженерные методы и современные научные знания о проектах и конструкциях технических устройств для решения экологических проблем, предусматривающих сохранение экологического равновесия.

уметь

- определять проблемную ситуацию (задачу) и выделяет ее базовые составляющие, решать различный варианты проблемной ситуации (задачи), разрабатывать алгоритмы их реализации;
 - определять и оценивать практические последствия возможных решений задачи;
- систематизировать информацию различных типов для анализа проблемных ситуаций; разрабатывать стратегии действий для построения алгоритмов решения поставленных задач;
- программировать разработанные алгоритмы и критического анализа полученных результатов. Демонстрировать знания основных понятий и фундаментальных законов физики, применять методы теоретического и экспериментального исследования физических явлений, процессов и объектов; применять методы теоретического и экспериментального исследования объектов, процессов, явлений, проводить эксперименты по заданной методике и анализировать их результаты;
- объяснять сущность химических явлений и процессов, демонстрировать знания основных понятий и законов химии;
- применять основы математики, математическое описание процессов, использовать навыки математического описания моделируемого процесса (объекта) для решения инженерных задач; использовать физико-математический аппарат для разработки простых математических моделей явлений, процессов и объектов при заданных допущениях и ограничениях;
- применять для решения экологических проблем инженерные методы и современные научные знания о проектах и конструкциях технических устройств, предусматривающих сохранение экологического равновесия.

владеть навыками:

- определения проблемной ситуации (задачи) и выделять ее базовые составляющие, навыками решения и разработки алгоритма реализации различных вариантов проблемной ситуации (задач);
- навыками определения и оценивания практических последствий возможных решений задачи;
- методами систематизации информации различных типов для анализа проблемных ситуаций;
- разработкой стратегии действий для построения алгоритмов решения поставленных задач;
- навыками программирования разработанных алгоритмов и критического анализа полученных результатов;
- навыками программирования разработанных алгоритмов и критического анализа полученных результатов основными понятиями и фундаментальными законами физики, методами теоретического и экспериментального исследования физических явлений, процессов и объектов;
- методами теоретического и экспериментального исследования объектов, процессов, явлений, навыками проведения экспериментов по заданной методике и анализировать их результаты;
- основными понятиями и законами химии, способен объяснять сущность химических явлений и процессов; основами математики, способен представить математическое описание процессов, навыками математического описания

моделируемого процесса (объекта) для решения инженерных задач; навыками использования физико-математического аппарата для разработки простых математических моделей явлений, процессов и объектов при заданных допущениях и ограничениях;

— инженерными методами и современными научными знаниями о проектах и конструкциях технических устройств для решения экологических проблем, предусматривающих сохранение экологического равновесия.

4. Структура дисциплины

Общая трудоемкость дисциплины составляет 4 зачетных единицы, 144 часа. Форма промежуточной аттестации экзамен.

Вид учебной работы		Всего часов, 1 семестр
Контактная работа – все	ero	144
в том числе:		-
- лекции (Л)		18
- практические занятия (ПЗ), Семинары (С)		34
- консультации (К)		
- курсовой проект (работа) (КР)		0,9
Самостоятельная работа студента (СРС) (всего), в том числе		91,1
- курсовая работа (КР)		-
Другие виды СРС:		-
- самостоятельное изучение учебного материала (СИУМ)		-
- индивидуальные домашние задания (ИДЗ)		6
- реферативная работа (Реф)		42,1
- оформление отчётов по практическим занятиям (ОПЗ)		7
Форма промежуточной аттестации	зачет (3)	
	экзамен (Э)	36*
Общая трудоемкость / Контактная работа	часов	144/91,1
	зачётных единиц	4/2,53

^{* -} часы используются для подготовки к контрольным испытаниям в течение семестра